برخی از مفاهیم ریاضی3
حد تابع در یک نقطه
اگر یک تابع و یک عدد حقیقی باشد و داشته باشیم:
آن گاه این فرمول را چنین میخوانیم << حد تابع f وقتی که x به سمت می رود برابر L است>> توجه کنید که این عبارت حتی اگر
باشد نیز می تواند درست باشد. در عوض تابع در نقطه c تعریف نشده است.حالی مثالی را ذکر می کنیم:تابع زیر را در نظر میگیریم
حال متغیر x را به عدد2 نزدیک می کنیم و خواهیم دید که مقدار تابع به 0.4 نزدیک می شود. در این مورد مشاهده می شود که
در این صورت گزینه تابع در نقطه X=C دارای
پیوستگی است. اما همیشه این مورد برقرار نیست.
|
|
|
تعریف مجرد حد:
فرض کنید f تابعی باشد روی یک بازه باز که شامل نقطه C است و فرض کنید L یک عدد حقیقی باشد در این صورت
را به صورت زیر تعریف میکنیم:
به ازای هر
وجود دارد یک
که برای هر x دلخواه اگر
آنگاه نتیجه بگیریم:
حد توابع در بی نهایت
حد یک تابع فقط در نزدیکی اعداد متناهی تعریف نمی شود بلکه ممکن است متغیر توابع وقتی که بی نهایت نزدیک می شود دارای حد باشند.
به عنوان مثال در تابع
خواهیم داشت:
- f(100) = 1.9802
- f(1000) = 1.9980
- f(10000) = 1.9998
مشاهده میشود که هر چه قدر x بزرگتر میشود ،مقدار تابع به عدد 2 نزدیکتر میشود .در واقع داریم:
حد یک دنباله
حد یک دنباله مانند 1.79, 1.799, 1.7999,... را در نظر بگیرید. مشاهده می کنیم که این دنباله به عدد 1.8 نزدیک می شود.
به طور کلی فرض می کنیم یک دنباله از اعداد حقیقی باشد. می گوییم حد این دنباله برابر L است و می نویسیم:
اگر و تنها اگر برای هر
یک عدد طبیعی مانند m باشد که برای هر n>m داشته باشیم
باید توجه کرد که ما می توانیم مقدار
. را به عنوان فاصله بین
و L در نظر بگیریم به چنین دنباله هایی که حد آنها به یک عدد متناهی میل می کند همگرا گویند و گرنه به آن واگرا گویند.
مشتق یکی از مهمترین مفاهیم ریاضی است. بوسیله مشتق میتوان برخی از مفاهیم فیزیکی (مانند سرعت و شتاب)با تعاریف ریاضی بیان نمود.
ااگر منحنی یک تابع را در فضای دو بعدی در نظر بگیریم بوسیله مشتق میتوانیم شیب خط مماس بر منحنی را در هر نقطه دلخواه بدست آوریم.همچنین با استفاده از مشتق میتوان خواص هندسی منحنی یک تابع مانند تقعر و تحدب را مشخص کرد.
البته باید به این نکته توجه کرد که هر تابعی در هر نقطه نمیتواند مشتق داشته باشد و به طور کلی مشتق پذیری یک تابع در یک نقطه شرایط خاصی میطلبد.
مشتق
مشتق گیری و مشتق پذیری
در گذشته های نه چندان دور، مشتق یک تابع را به صورت زیر نشان می دادند:
که در این فرمول
نشان دهنده میزان تغییرات یک کمیت است. ولی در حال حاضر برای محاسبه مشتق توابع،بیشتر از فرمول زیر استفاده میکنند:
معمولا از نمادهای زیر برای نشان دادن مشتق تابع f نسبت به متغیر x، استفاده میکنند:
![]() |
![]() |
![]() |
یک تابع را در نقطه ای مانند x مشتق پذیر گویند اگردر آن نقطه مشتق موجود باشد. و برای مشتق پذیری تابع در یک بازه لازم است تابع در هر نقطه دلخواه از بازه مشتق پذیر باشد.اگر تابع در نقطه ای مانند c پیوسته نباشد آنگاه در c نمیتواند مشتق پذیر باشد.البته لازم به ذکر است که پیوستگی در یک نقطه وجود مشتق را تضمین نمیکند.مشتق یک تابع مشتق پذیر میتواند خود نیز مشتق پذیر باشد،که به مشتق آن مشتق دوم تابع گویند.مشتق مراتب بالاتر نیز به همین ترتیب تعریف میشوند.
بررسی مشتق از نظر هندسی
|
از نظر هندسی مشتق یک تابع در یک نقطه دلخواه ،شیب خط مماس بر منحنی در آن نقطه است.البته پیدا کردن مستقیم شیب خط مماس در یک نقطه کار دشواری است.زیرا فقط مختصات یک نقطه از خط مماس را داریم.(برای پیدا کردن شیب یک خط از مختصات دو نقطه بر روی خط استفاده میکنیم)برای حل این مشکل از یک خط متقاطع استفاده کرده و این خط را به خط مماس نزدیک میکنیم.برای درک بهتر موضوع به شکل مقابل توجه نمایید.در این شکل خط متقاطع با رنگ بنفش و خط مماس با رنگ سبز مشخص شده است و عددی که در تصویر تغییر میکند نشان دهنده شیب خط متقاطع میباشد. حال از دیدگاه ریاضی این روش را بیان میکنیم:
از دیدگاه ریاضی بدست آوردن مشتق با حدگیری از شیب خط قاطع که به خط مماس نزدیک شده است بدست می آید.پیدا کردن شیب نزدیکترین خط متقاطع به خط مماس با استفاده از کوچکترین h در فرمول زیر حاصل میشود:
| عکس پیدا نشد |
|
|
در این فرمول h به عنوان کوچکترین تغییر متغیر x تعریف میشودو میتواند مقدار مثبت یا منفی اختیار کند. در این فرمول شیب خط با استفاده از نقاط
و
حاصل میشود.واضح است که در این روش فقط یک نقطه روی خط برای ما معلوم است و نیازی برای بدست آوردن نقطه دوم روی خط وجود ندارد.همچنین در این روش مشتق x ،حاصل حد زیر است:
ارتباط مشتق با علم فیزیک
مشتق نقش مهمی در تعریف برخی ار کمیتهای فیزیک حرکت دارد.ما با داشتن موقعیت اجسام بر حسب زمان میتوانیم سرعت و شتاب آنها را محاسبه کنیم.اگر ما از معادله مکان جسم بر حسب زمان مشتق بگیریم معادله سرعت بدست میآید و اگر از معادله سرعت مشتق گیری نماییم(مشتق دوم معادله مکان)معادله شتاب حاصل میشود.نقاط بحرانی
نقاطی از تابع که به ازای آنها مشتق تابع تعریف نشده و یا برابر صفر باشد را نقاط بحرانی مینامند.اگر مشتق دوم در یک نقطه بحرانی مثبت باشد،آن نقطه مینیمم نسبی است.و اگر منفی باشدماکزیمم نسبی است،و اگر برابر صفر باشد ممکن است ماکزیمم و مینیمم نسبی نباشد.مشتق گرفتن و بدست آوردن نقاط بحرانی،اغلب ساده ترین راه برای پیدا کردن مینیمم و ماکزیمم نسبی است.(در بهینه سازی نیز این روش بسیار مفید است.به طور کلی مینیمم و ماکزیمم نسبی فقط میتوانند جزئ نقاط بحرانی باشند.تجزیه و تحلیل نمودارها
مشتق ابزار مناسبی برای آزمودن نمودار تابع است. نقاطی از دامنه تابع که به ازای آنها مشتق اول برابر صفر شود میتوانند نقاط اکسترمم نسبی تابع باشند.البته باید توجه کرد که تمام نقاط بحرانی نقاط اکسترمم نسبی نیستند.برای مثال تابع
یک نقطه بحرانی در x=0 دارد، ولی میتوان از نمودار تابع متوجه این نکته شد که تابع در این نقطه دارای ماکزیمم یا مینیمم نسبی نیست. آزمون مشتق اول و آزمون مشتق دوم ، روش هایی را برای تشخیص نقاط ماکزیمم و مینیمم نسبی فراهم میکند.لازم به ذکر است در فضاهای چند بعدی نقاط اکسترمم را با استفاده از مشتقات جزئی بدست میآورند.
انتگرال
در حساب دیفرانسیل و انتگرال ، از انتگرال یک تابع برای عمومیت دادن به محاسبه مساحت ، حجم ، جرم یک تابع استفاده می شود. فرایند پیدا کردن جواب انتگرال را انتگرال گیری گویند.البته تعاریف متعددی برای انتگرال گیری وجود دارد ولی در هر حال جواب مشابه ای از این تعاریف بدست می آید. انتگرال یک تابع مثبت پیوسته در بازه (a,b) در واقع پیدا کردن مساحت بین خطوط x=0 , x=10 و خم منفی F است . پس انتگرال F بین a و b در واقع مساحت زیر نمودار است. اولین بار لایب نیتس نماد استانداری برای انتگرال معرفی کرد و به عنوان مثال انتگرال f بین a و b رابه صورت
نشان می دهند علامت
،انتگرال گیری از تابع f را نشان می دهند ،aو b نقاط ابتدا و انتهای بازه هستند و f تابعی انتگرال پذیر است و dx نمادی برای متغیر انتگرال گیری است.
|
|
|
از لحاظ تاریخی dx یک کمیت بی نهایت کوچک را نشان می دهد. هر چند در تئوریهای جدید، انتگرال گیری بر پایه متفاوتی
پایه گذاری شده است به عنوان مثال تابع f را بین x=0 تا x=10 در نظر بگیرید ،مساحت زیر نمودار در واقع مساحت مستطیل خواهدبود که بین x=0 ،x=10 ،y=0 ،y=3 محصور شده است یعنی دارای طول 10 و عرض 3است پس مساحت آن برابر 30 خواهد بود .
اگر تابعی دارای انتگرال باشد به آن انتگرال پذیر گویند و تابعی که از انتگرال گیری از یک تابع حاصل می شود تابع اولیه گویند . اگر انتگرال گیری از تابع در یک محدوده خاص باشند به آن انتگرال معین گویند که نتیجه آن یک عدد است ولی اگر محدوده آن مشخص نباشد به آن انتگرال نامعین گویند.
محاسبه انتگرال
اکثر روش های اساسی حل انتگرال بر پایه قضیه اساسی حساب دیفرانسیل و انتگرال بنا نهاده شده است که بر طبق آن داریم:
1.f تابعی در بازه (a,b) در نظر می گیریم .
2.پاد مشتق f را پیدا می کنیم که تابعی است مانند f که و داریم:
3.قضیه اساسی حساب دیفرانسیل و انتگرال را در نظر می گیریم:
بنابراین مقدار انتگرال ما برابر
خواهد بود.
به این نکته توجه کنید که انتگرال واقعاً پاد مشتق نیست (یک عدد است) اما قضیه اساسی به ما اجازه می دهد تا از پاد مشتق برای محاسبه مقدار انتگرال استفاده کنیم .
معمولاً پیدا کردن پاد مشتق تابع f کار ساده ای نیست و نیاز به استفاده از تکنیکهای انتگرالگیری دارد این تکنیکها عبارتند از :
- انتگرال گیری بوسیله تغییر متغیر
- انتگرال گیری جزء به جزء
- انتگرال گیری با تغییر متغیر مثلثاتی
- انتگرال گیری بوسیله تجزیه کسرها
روش هایی دیگر نیز وجود دارد که برای محاسبه انتگرالهای معین به کار می رود همچنین می توان بعضی از انتگرال ها با ترفند هایی حل کرد برای مثال می توانید به انتگرال گاوسی مراجعه کنید .
تقریب انتگرالهای معین
|
|
هر چه قدرعرض مستطیل ها کوچک میشوندمقدار دقیق تری از مقدار انتگرال بدست میآید. |
انتگرال هایی معین ممکن است با استفاده از روش های انتگرال گیری عددی ،تخمین زده شوند.یکی از عمومی ترین روش ها ،روش مستطیلی نامیده می شود در این روش ناحیه زیر نمودار تابع به یک سری مستطیل تبدیل شده و جمع مساحت آنها نشان دهنده مقدار تقریبی انتگرال است.
از دیگر روش هایی معروف برای تخمین مقدار انتگرال روش سیمپسون و روش ذوزنقه ای است. اگر چه روش های عددی مقدار دقیق انتگرال را به ما نمی دهند ولی در بعضی از مواقع که انتگرال تابعی قابل حل نیست یا حل آن مشکل است کمک زیادی به ما می کند .
تعریف های انتگرال
از مهم ترین تعاریف در انتگرال می توان از انتگرال ریمان و انتگرال لبسکی(lebesgue) است. انتگرال ریمان بوسیله برنهارد ریمان در سال 1854 ارئه شد که تعریف دقیقی را از انتگرال ارائه می داد تعریف دیگر را هنری لبسکی ارائه داد که طبق این تعریف شرایط تعویض پذیری حد و انتگرال با شرط مساوی ماندن عبارت، ارائه می کرد.
از دیگر تعاریف ارائه شده در زمینه انتگرال میتوان به انتگرال riemann-stieltjes اشاره کرد. پس به طور خلاصه سه تعریف زیر از مهمترین تعاریف انتگرال میباشند:
- انتگرال ریمان
- انتگرال لبسکی
- انتگرال riemann-stieltjes
تقسیم پذیری
مفهوم عاد کردن
گوییم عدد
عدد
را عاد میکند یا
عدد
را میشمارد و یا
مقسوم علیه
است یا
مضرب
است و یا
بر
بخشپذیر است ، هر گاه عدد صحیحی مانند
موجود باشد ، بطوریکه
. نماد
به این معنی است که
عدد
را عاد میکند.
خواص بدیهی بخشپذیری در قضیه زیر خلاصه میشود:
قضیه
و
نتیجه میدهد که
ایجاب میکند که
و
نتیجه میدهند که
- فرض میکنیم
. در اینصورت
ایجاب میکند که
.
و
نتیجه میدهد که
اثبات
به این معنی است که عدد صحیح
وجود دارد ، بطوریکه
و
به این معنی است که عدد صحیح
وجود دارد که
. بنابراین :
- از
نتیجه میشود که عدد صحیح
وجود دارد ، بطوریکه
. بنابراین:
یعنی عدد صحیح
وجود دارد که
و همچنین
نتیجه میدهد ، عدد صحیحی مانند
وجود دارد ، که
. حال به جای
در رابطه اول،رابطه دوم را قرار میدهیم و از آنجا:

یعنی عدد صحیحی مانند
وجود دارد که
. چون
، پس
. بنابراین
به این معنی است که
نتیجه میدهد که
و
نتیجه میدهد که
.اما چون
، پس طبق بند فوق
نتیجه میدهد
و از
میتوان نتیجه گرفت
. بنابراین
و درنهایت 
MAPLE
یک نرم افزار برای حل مسائل ریاضی است که اولین بار در سال 1981برای انجام مجموعه ای از محاسبات در دانشگاه waterllo طراحی شد. در سال 1988، این نرم افزار توسعه داده شد و به توسط یک کمپانی کانادایی مستقر در دانشگاه به بازار تجاری کامپیوتر عرضه شد.فروش و عرضه این نرم افزار به بازار سود زیادی را نصیب، صاحبان کمپانی کرد.
این نرم افزار ابزاری قدرتمند در انجام محاسبات ریاضی و مهندسی می باشد .
معرفی
maple یک مفسر، برای زبان برنامه نویسی پویا است، به طور معمول،عبارات جبری و عبارات منطق در حافظه کامپیوتر، ذخیره می شوند و پس از آن بوسیله این نرم افزار پردازش شده و حل میگردند. از این نرم افزار در حل مسایل مختلف ریاضی از قبیل هندسه، حساب و ... استفاده می شود.
وقتی میپل بار می شود (اجرا می گردد)فقط هسته که پایه و اساس سیستم میپل و شامل دستورات بنیادی و اولیه می باشد را به حافظه منتقل می کند. هسته از کدهایی به زبان C تشکیل شده که تقریبا 10 درصد کل سیستم میپل را در بر می گیرد. به منظور سرعت و کارایی بیشتر هسته کوچک نگه داشته شده است. نود درصد بقیه به زبان میپل نوشته شده است که در کتابخانه هایMaple قرار دارد.
نمونه ای از یک برنامه
معادله دیفرانسیل خطی زیر را در نظر بگیرید
![]() |
کد زیر این معادله را حل میکند:
(dsolve({diff(y(x),x,x)- 3*y(x)= x,y(0)=1,D(y)(0)=2},y(x))
جدیدترین نگارش این نرم افزار نگارش 6 آن میباشد که قابلیت نمایش اعداد تا 100 رقم اعشار و نیز نگهداری 8000 جمله جبری را دا




بسم الله الرحمن الرحیم... لا اله الا الله